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Introduction

Autism spectrum disorder (henceforth ASD) is a neuro-
developmental condition characterized by two broad 
symptom clusters, namely, (1) deficits in social interac-
tion and social communication as well as (2) restricted 
or narrow interests and repetitive behaviors (American 
Psychiatric Association, 2013). The social deficits spe-
cifically include difficulties in social cognition, emo-
tion-recognition and mentalizing, maintaining eye 
contact and processing gaze information as well as initi-
ating and fostering social affiliations. These traits are all 
thought to be mediated by oxytocin (OT).

OT and ASD

OT is a neuropeptide produced in the hypothalamus and 
released from axonal projections to other parts of the central 
nervous system and from the posterior pituitary into periph-
eral circulation (Meyer-Lindenberg et  al., 2011). OT 
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is well-known for its role in parturition, breastfeeding, and 
parent-infant bonding, but has also been shown to mediate 
broader social relationships (Donaldson & Young, 2008). 
Fundamentally, OT enhances social recognition, social mem-
ory, and reward through modulation of dopaminergic path-
ways, as well as by reducing anxiety and stress by dampening 
amygdala activity and the hypothalamic–pituitary–adrenal 
axis (Bethlehem et al., 2014; Hurlemann & Grinevich, 2018; 
Piva & Chang, 2018; Uvnäs-Moberg, 1998).

Based on these reported social effects of OT, it is 
thought to be implicated in the social deficits of ASD. 
Indeed, several components of the OT system—such as 
the genes for OT itself, for its receptor, and for cluster of 
differentiation 38 (a transmembrane protein that regulates 
OT release)—have been associated with ASD (Feldman 
et al., 2016). Variation in these genes could result in differ-
ences in the binding affinity between OT and its receptor, 
the distribution of OT receptors, as well as circulating OT 
levels. While examining receptor distributions and binding 
affinity is not typically possible in humans (but see 
Freeman et  al., 2018), several reviews have argued that 
autistic people have lower levels of circulating OT 
(Cochran et al., 2013; Crespi, 2016). Such a difference in 
OT levels would bolster efforts to use OT administration 
for alleviating social deficits in ASD patients (Peled-Avron 
et  al., 2020; Phaik Ooi et  al., 2017; Wang et  al., 2019). 
Thus, establishing whether OT levels differ in ASD is an 
important step toward developing therapeutic uses. In the 
following, we briefly review previous studies comparing 
OT levels between autistic and neurotypical individuals.

Previous studies comparing OT levels in autistic 
versus neurotypical people

Modahl et al. (1998) was the first study to find lower OT 
plasma levels in autistic boys. The same researchers also 
found differences in the actual OT peptide forms, suggest-
ing broader differences in OT metabolism (Green et  al., 
2001). Al-Ayadhi (2005) and El-masry et  al. (2010) con-
firmed lower OT plasma levels in autistic children. Later, 
the hypothesis of lower OT levels in autistic children was 
challenged. Miller et  al. (2013) did not find lower OT 
plasma levels, nor did (Jacobson et al., 2014; Parker et al., 
2014; Taurines et al., 2014). The latter study did, however, 
show a correlation between OT plasma levels as well as 
polymorphisms in the OT receptor gene with theory of mind 
and social communication performance not only in autistic 
children but also in their siblings and unrelated neurotypical 
children, indicating differences in the OT system not to be 
uniquely associated with ASD. Hence, OT may be associ-
ated with socio-cognitive function in a continuous fashion 
that is not always captured by a categorical comparison of 
children diagnosed with ASD to neurotypical ones.

Much fewer studies were conducted in autistic adults. 
Both Althaus et al. (2016) and Jansen et al. (2006) found 

higher plasma OT levels in autistic adults compared to 
neurotypical ones, the former including only males. Andari 
et al. (2010) were the only authors to find lower OT levels 
in autistic adults, including mostly males with Asperger’s 
syndrome and high-functioning autism. Munesue et  al. 
(2010) and Procyshyn et al. (2020) found no difference in 
plasma and saliva OT levels in autistic adults, with the lat-
ter measuring women only. The same was true for Aita 
et  al. (2019) regarding plasma OT levels in a sample of 
hospitalized adults with severe intellectual disabilities.

In an attempt to capture some of the continuous varia-
tion in socio-cognitive function, 19 of the papers reviewed 
in the present meta-analysis correlated OT levels with 
ASD symptoms, quantified by at least 15 different scores 
or diagnostic instruments. Some studies did find OT levels 
to be inversely correlated with ASD symptom scores 
(Alabdali et al., 2014; Taurines et al., 2014), ASD severity 
(Kobylinska et al., 2019), repetitive behavior (Aita et al., 
2019; Miller et al., 2013; Yang et al., 2015), impairment in 
verbal communication (Zhang et al., 2016), or attention to 
detail (Husarova et  al., 2013). Counterintuitively, other 
studies found positive correlations of OT levels and ASD 
severity or symptoms (Husarova et  al., 2016; Jacobson 
et al., 2014; Tomova et al., 2015). Autistic individuals with 
higher OT levels were found to be more socially and 
developmentally impaired (Modahl et al., 1998) or to have 
difficulties in “Adaptation to change” (Yang et al., 2017). 
Meanwhile, El-masry et al. (2010) could not find a correla-
tion between OT levels and ASD symptom severity. The 
same was true for Oztan, Jackson, et al. (2018), but they 
found a lower expression of the receptors for OT and argi-
nine vasopressin (AVP) in autistic people as measured in 
blood by neuropeptide mRNA levels, suggesting that OT 
receptor quantity or distribution is also involved in ASD. 
Here, we focus solely on the overall difference in OT lev-
els between autistic and neurotypical people, acknowledg-
ing that there could be more subtle, continuous associations 
between OT levels and socio-cognitive performance.

While the focus of the present meta-analysis is on dif-
ferences in baseline OT levels, several studies measured 
changes in OT levels in the context of behavioral experi-
ments. Feldman et al. (2014) showed that the lower base-
line OT levels of autistic children normalized during 
parent–child interaction, that is, reached the same levels as 
those of neurotypical children, before returning to rela-
tively lower baseline levels. Fujisawa et al. (2014) found 
an association between salivary OT levels and attention to 
pointed-at objects, but only in neurotypical children and 
not in autistic ones. Corbett et  al. (2016) administered a 
low dose of hydrocortisone to children and measured a 
subsequent increase in OT plasma levels, proposed to 
reflect OT’s stress-buffering role—but only in neurotypi-
cal children and not in autistic ones. Mariscal et al. (2019) 
found autistic children to have a decreased contagious 
yawning response, but only those with low plasma OT 
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levels. In sum, these studies indicate that not only baseline 
OT levels but also OT reactivity to different contexts may 
differ between autistic and neurotypical individuals.

Given these varied findings, it is important to know 
whether there are robust differences in OT levels between 
autistic and neurotypical individuals, and what factors 
might moderate such differences. To date, only one for-
mal meta-analysis has addressed whether baseline OT 
levels differ in autistic and neurotypical people 
(Rutigliano et al., 2016). These authors found suggestive 
evidence for such a difference (plasma: k = 5, Hedges’ 
g = −0.58, 95% confidence interval (CI) [−1.44, 0.29], 
p = 0.193; saliva: k = 2, g = −0.35, 95% CI [−0.70, −0.01], 
p = 0.046). However, due to small sample size, methodo-
logical heterogeneity, and a Bonferroni correction applied 
to all meta-analyses in their article (which included sev-
eral other psychiatric conditions), it was concluded that 
there was no significant difference in OT levels. A recent 
systematic review by Wilczynski et al. (2019) compared 
OT plasma levels (k = 10) and AVP plasma levels (k = 5) 
but did not provide a formal meta-analysis. They deemed 
it impossible to draw unequivocal conclusions due to, 
among others, heterogeneous methodologies, demo-
graphic differences among groups, or generally low qual-
ity of publications. They also excluded 17 of 29 articles 
from their final analysis because they did not meet their 
inclusion criteria of a “clearly and comprehensively pre-
sented” and “good methodology.” However, we could not 
identify which studies were excluded or what the exact 
criteria were.

Here, we greatly expanded the sample size compared to 
our predecessors (k = 31 studies), partly thanks to much 
recent research. We accounted for methodological hetero-
geneity using moderator analysis and followed the 
Newcastle–Ottawa Scale for assessing study quality in 
meta-analyses (Wells et  al., 2000). Our goal was to test 
whether the current state of the field supported an overall 
difference in OT levels between autistic and neurotypical 
people, and what methodological or demographic factors 
might influence the magnitude of this difference.

Methods

Search and inclusion

A systematic search was conducted to find relevant arti-
cles. First, Web of Science was searched until 1 April 2020 
(see Supplementary Materials for the search code). Articles 
were screened by title or abstract. If eligibility could not be 
evaluated, articles were read in full text. Second, reference 
lists of the retrieved articles were screened for additional 
articles that met the inclusion criteria. The search process 
is summarized in Figure 1.

Eligibility for the meta-analysis was met if articles: (1) 
were original articles written in English; (2) included 

participants with a diagnosis of ASD according to the 
Diagnostic and Statistical Manual of Mental Disorders 
(American Psychiatric Association, 2013) or the 
International Statistical Classification of Diseases and 
Related Health Problems (World Health Organization, 
1993) or validated diagnostic instruments⁠; (3) included a 
comparison group; and (4) reported mean levels or statisti-
cal differences of OT measurements between groups.

Articles were excluded if they: (1) reported an overlap-
ping data set with another retrieved article. In this case, the 
article with the larger data set was included. In some cases, 
we suspected overlap but could not confirm it; we there-
fore report results with and without these studies. (2) 
Failed to report enough information by neither reporting 
mean OT levels nor statistical indicators of differences 
between groups. In those cases, we tried to contact the 
authors to obtain missing numbers. Hence, Green et al. 
(2001) had to be excluded because of an overlapping data-
set with Modahl et al. (1998). Husarova et al. (2013); 
Husarova et al. (2016); Lakatosova et al. (2015); 
Ostatnikova et al. (2016) and Tomova et al. (2015) were all 
written by a largely identical research team and recruited 
their participants at the same institution. Because we could 
neither confirm nor rule out overlap of data and did not 
receive an answer from these researchers, we conducted 
the meta-analysis including all articles as well as exclud-
ing all but the one with the largest sample size (Lakatosova 
et  al., 2015). We received additional information from 
Jansen et al. (2006) and Zhang et al. (2016), allowing us to 
include these studies. Sufficient information could not be 
obtained from Corbett et al. (2011).

Study quality

The Newcastle–Ottawa Scale for assessing the quality of 
non-randomized studies in meta-analysis (Wells et  al., 
2000) includes eight criteria, of which five are applicable 
here: case definition, representativeness of the cases, 
selection of controls, definition of controls, and compara-
bility. We found virtually no variation in study quality 
across these domains, except “selection of controls,” 
where most studies included community samples but two 
included hospital samples (Aita et al., 2019; Oztan, Garner, 
et al., 2018). Thus, there were no obvious differences in 
recruiting, diagnosis, or sample composition that could 
impact study quality (Wells et al., 2000) and would there-
fore need to be accounted for in a meta-analysis.

Data extraction and meta-analysis

We extracted mean OT levels and their standard error (SE) 
or deviation (SD) for ASD and comparison groups as well 
as the sample sizes of each group to calculate Cohen’s d 
and its variance as a standardized measure of mean differ-
ence. If raw mean values and variances were not reported 



John and Jaeggi	 2155

and the authors did not respond to emails soliciting this 
information, we extracted statistical indicators of differ-
ences between groups (t-test, F-test, p-value, or Mann–
Whitney U Z) and calculated Cohen’s d from these values. 
The latter procedure was followed in Feldman et al. (2014); 
Jacobson et al. (2014); Ostatnikova et al. (2016); Oztan, 
Garner, et al. (2018); Oztan, Jackson, et al. (2018); Parker 
et  al. (2014); Tomova et  al. (2015); Yang et  al. (2015, 
2017). Table 1 lists Cohen’s d and its variance for all stud-
ies as well as further details on diagnosis, number of par-
ticipants, their age and sexes, specimen type, and assay 
method. Specific data on socioeconomic status and educa-
tional attainment levels were typically not recorded in 
these studies, with the single exception of Feldman et al. 
(2014, who reported all parents of autistic children to have 
completed high school). We calculated an overall weighted 
effect size using random effects meta-analysis. We also 
assessed several moderators using meta-regression, 
including whether the subjects were children or adults 
(mean age >18), the difference in sex composition 
between patient and comparison groups (since males gen-
erally have lower OT levels (Carter, 2007)), as well as the 
assay type (enzyme-linked immunosorbent assay (ELISA) 

or radioimmunoassay (RIA)) and specimen type (blood, 
cerebrospinal fluid (CSF), and saliva) used. We tested for 
publication bias and missing studies using Egger’s regres-
sion test (Egger et  al., 1997) as well as the trim-and-fill 
method (Duval & Tweedie, 2000). These tests are based on 
the idea that all studies should cluster symmetrically 
around the overall effect size with a degree of spread given 
by the precision of the study (see Supplementary Figure 
S1); at lower precision, that is, smaller sample sizes, effect 
sizes are scattered more widely, and studies with large 
effect sizes in the expected direction may be overrepre-
sented, leading to detectable asymmetry. Finally, we tested 
for influential outliers using various diagnostics combined 
in the “influence” function. All analyses were conducted 
using the metafor package in R 3.5.2 (Viechtbauer, 2010). 
Community stakeholders were not involved in the prepara-
tion of this meta-analysis.

Results

Thirty-one articles were selected for meta-analysis (see 
Figure 1 and Table 1). Overall, we found that OT levels 
were significantly lower in autistic people compared to 

Figure 1.  PRISMA workflow summarizing our search process and final sample.
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neurotypical individuals (Cohen’s d = −0.36, 95% 
CI = [−0.61, −0.10], k = 31, p = 0.007, Figure 2). There was 
no evidence for publication bias as Egger’s test was not 
significant (p = 0.17) and the trim-and-fill method did not 
detect any missing studies (see Supplementary Figure S1). 
There was one influential outlier study (Alabdali et  al., 
2014), the removal of which slightly reduced effect size 
(d = −0.28, 95% CI = [−0.49, −0.06], k = 30, p = 0.01). 
Excluding the four studies with potential data overlap still 
yielded a significant effect (d = −0.30, 95% CI = [−0.58, 
−0.01], k = 27, p = 0.04). Since there was significant heter-
ogeneity in effect sizes among studies (Q = 193.81, degree 
of freedom (df) = 30, p < 0.0001), we examined the influ-
ence of potential moderators.

Meta-regressions showed that significant differences in 
OT levels between ASD and comparison groups were only 
found in children (k = 25, d = −0.44, 95% CI = [−0.72, 
−0.16], p = 0.002) but not adults (k = 6, d = 0.03, 95% 
CI = [−0.55, 0.61], p = 0.92; test for difference: QM = 9.72, 
df = 2, p = 0.008), and only in studies using ELISA (k = 25, 
d = −0.46, 95% CI = [−0.74, −0.19], p = 0.001) but not RIA 
(k = 6, d = 0.12, 95% CI = [−0.45, 0.70], p = 0.68; 

QM = 11.01, df = 2, p = 0.004). Furthermore, there was a 
trend toward different effect sizes according to specimen 
type (QM = 7.04, df = 3, p = 0.07), with a significant effect 
only detectable in blood samples (k = 26, d = −0.38, 95% 
CI = [−0.67, −0.09], p = 0.01) but not saliva (k = 4, d = −0.27, 
95% CI = [−1.00, 0.47], p = 0.47) or CSF (k = 1, d = −0.16, 
95% CI = [−1.60, 1.28], p = 0.83); given the small sample 
sizes of the latter two and the fact that all overall effect 
sizes are negative, this difference seems negligible. Finally, 
the overall effect size was not driven by a greater propor-
tion of males in the ASD group; indeed, when correcting 
for differences in the proportion of males in the ASD and 
comparison groups, the overall effect size becomes slightly 
stronger (d = −0.43, 95% CI = [−0.70, −0.15], p = 0.002), 
although this moderator was not significant (QM = 1.87, 
df = 1, p = 0.17). In all meta-regressions, significant resid-
ual heterogeneity remained.

Discussion

We found strong evidence that OT levels differed 
between autistic children (but not adults) and 

Figure 2.  Forest plot showing effect sizes (Cohen’s d) from individual studies and the overall weighted effect size (with 95% CI).
The column on the right indicates whether the subjects in each study were adults or children, and overall effect sizes for studies on children and 
adults are presented at the bottom. As indicated on the x-axis, a negative effect size means that oxytocin levels were lower in autistic people 
compared to neurotypical individuals, while a positive effect size means the opposite. Note that the study with the lowest effect size, plotted at the 
very top, was identified as an influential outlier.
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neurotypical individuals. Our results support and 
strengthen the suggestive difference found in an earlier 
meta-analysis on a much smaller sample of studies 
(Rutigliano et al., 2016).

Our finding of lower OT levels in autistic children 
points to an involvement of the OT system in the develop-
ment or manifestation of ASD. The substantial heterogene-
ity of the results, even after accounting for moderators, 
may be partly due to the inclusion of a wide range of ASD 
phenotypes (see Table 1). Furthermore, in at least 19 arti-
cles, OT levels were correlated with ASD symptom sever-
ity, with the majority reaching significance. Together with 
studies relating OT levels to socio-cognitive functions in 
neurotypical individuals as well as in siblings of autistic 
children (Parker et al., 2014), our finding is consistent with 
OT levels mediating a continuous range of socio-cognitive 
function, at the extreme of which are autistic people 
(Crespi, 2016).

In contrast to the strong evidence of lower OT levels in 
autistic children, OT levels in autistic adults were virtually 
indistinguishable from those of neurotypical adults. 
Although only a few studies included adults (k = 6), this 
suggests that OT levels in autistic people might normalize 
as they grow older. Consistent with this possibility, longitu-
dinal studies point to improvement in symptoms and adap-
tive functioning toward adulthood (Magiati et  al., 2014; 
Seltzer et al., 2004), including improved communication, 
perhaps mediated by elevated OT levels. Such a normaliza-
tion of OT levels could explain why intranasal administra-
tion of OT in autistic adults often yields small or no effects 
on social function or repetitive behaviors (Peled-Avron 
et al., 2020; Phaik Ooi et al., 2017; Wang et al., 2019).

Instead of OT levels being unusually low in autistic 
children and later “catching up” in adulthood, it is also 
possible that OT levels in neurotypical children are unu-
sually high and later decline to match those of autistic 
people by adulthood. The latter scenario would be analo-
gous to OT receptor densities in the ventral pallidum, 
which are the highest in neurotypical children and most 
different from autistic individuals at younger ages, before 
converging on the lower level of autistic people by adult-
hood (Freeman et al., 2018). In this view, the OT system 
may be responsible for priming the brain for social inter-
actions during a critical period in childhood, and one 
would expect a lack of such priming to have effects last-
ing into adulthood, as seen in a majority of autistic adults 
continuing to show social deficits (Magiati et al., 2014). 
In general, relatively little is known about the develop-
mental trajectory of OT levels, and detailed longitudinal 
studies tracking OT levels, socio-cognitive skills, and 
other ASD-related symptoms would be needed to better 
understand how OT levels mediate ASD and social cog-
nition more broadly across the life course.

In sum, our results warrant further investigation of 
the connections between the OT system and social 

deficits in ASD and of the potential therapeutic use of 
OT to alleviate these deficits, especially in children. This 
study cannot address causality, that is, whether social 
deficits cause low OT levels or vice versa; future work 
on the genetics of the OT system or longitudinal studies 
of ASD symptom severity and OT levels may help estab-
lish such causal connections.
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